Calbiochem®

The Complement System

Complement Reagents of the Highest Quality
The complement system provides innate defense against microbial infection and is a “complement” to antibody mediated immunity. The complement system consists of thirty five interacting plasma and membrane associated proteins which contribute to host-defense and initiate and amplify inflammation, even in the preimmune state where specific antibodies and lymphocytes are not available. Contained in this system are several soluble factors that prevent spontaneous complement activation from occurring in solution, as well as, several regulatory membrane associated proteins that protect host cells from accidental complement attack. Activation of the complement system is achieved through three major pathways: the classical pathway, which is activated by certain isotypes of antibodies bound to antigens (immune complexes); the alternative pathway, which is activated on microbial cell surfaces in the absence of antibody; and the lectin pathway, which is activated by a plasma lectin (mannose binding lectin - MBL) that binds to mannose residues on microbes. Following the activation of complement pathways, several peptides are generated that help to increase the number of circulating leukocytes, promote leucocyte adhesion to vascular endothelium, and attract phagocytes to the site of infection.

The classical pathway is activated mainly when certain antibody molecules (IgM, IgG1, IgG2, and IgG3) bind to a foreign particle. C1 binding to the Fc region of the antibody molecule initiates this pathway. C1, present in serum as a proenzyme, tends to undergo auto-activation, a process strictly controlled by C1 inhibitor. The C1 complex is formed by the calcium dependent interaction of C1q with C1r,C1s. Initially, a conformational change in C1r occurs, followed by proteolytic activation, which results in the cleavage of all four polypeptide chains of C1r,C1s. The two activated C1s subunits are then able to catalyze the assembly of the C3 convertase (C4b2a), which is formed from C2 and C4 (see figure).

The C4b2a complex cleaves the C3 component. Its enzymatic site is located in the C2a fragment which has substrate specificity for C3. The C3 convertase is an unstable enzyme that undergoes a time and temperature-dependent decay. The C2a fragment of C4b2a is released, leaving the C4b site to take up new native C2 to form a new C4b2a enzyme.

Cleavage of the C3 component releases C3a and C3b. C3a appears to be important in many inflammatory responses. The C3b fragment covalently binds to the cell or bacterial surface and plays a role in opsonisation. Binding of C3b to the C4b component of the C3 convertase, results in C5 convertase (C4b3b2a) formation.

The alternative pathway is important in host innate defense mechanisms against bacterial infection. Unlike the classical pathway, the alternative pathway can be activated by invading microorganisms in the absence of a specific antibody. A variety of polysaccharides, such as LPS and plant (inulin) polysaccharides, as well as fungi, bacteria, and viruses are activators of this pathway. In this pathway, C3 and Factors B, D, H, I, and P play a role in the initiation, recognition, and amplification processes, ultimately leading to the formation of activator-bound C3/C5 convertase.

Initiation of the alternative pathway occurs by spontaneous low-rate hydrolysis of the thioester in C3 and the resultant continuous supply of C3(H2O) in solution. Binding of Factor B to C3(H2O) in the presence of Factor D leads to the formation of the alternative pathway initiation C3 convertase (C3(H2O)Bb) (see figure). The activity of the initiation C3 convertase is modulated by Factors H, I, and P. This initiation fluid phase C3 convertase can cleave C3 to release C3a and C3b, the same C3 fragments produced by the C3 convertase of the classical pathway. The C3b fragment covalently binds to cellular and microbial surfaces. If the cell or microbe surface is an activator, alternative pathway activation will proceed. If the C3b fragment covalently binds to a cell or microbe surface that is not an activator, alternative pathway activation will stop. Binding of Factor B to a C3b fragment covalently bound to an activator, in the presence of Factor D, will lead to the formation of an alter-
native pathway C3 convertase (C3bBb) on the activator surface. The enzymatic site that mediates C3 cleavage is located in the Bb molecule. Binding of an additional C3b to the C3 convertase leads to the formation of the C5 convertase (C3bBb). Factor P (properdin) stabilizes both the C3 and C5 alternative pathway convertases from decay dissociation.

The lectin pathway begins when mannose-binding lectin (MBL) binds to membrane carbohydrates on microorganisms. Two proteins, MASP1 and MASP2 (equivalent to C1r and C1s of the classical pathway), are associated with MBL to form a complex enzyme similar to C1 of the classical pathway. Like C1, once activated, the MBL-MAST1-MAST2 complex is able to cleave C4 and C2 to form C4bC2a, the C3 convertase that is able to enzymatically split hundreds of molecules of C3 into C3a and C3b.

In all three activation pathways, the cleavage of C5 leads to the assembly of the C5b–9 membrane attack complex (MAC). The membrane attack complex is responsible for the membrane lytic events associated with complement activation. The C5 convertase cleaves the C5 component to generate C5a and C5b fragments. C5a serves as an inflammatory mediator that can activate a variety of cells through G-protein-linked receptors. The MAC is composed of one molecule each of C5b, C6, C7, and C8 and as many as 10 to 12 molecules of C9. When C5 is cleaved by C5 convertase, nascent C5b binds to C6 to form a stable bimolecular complex that binds C7. Membrane-bound C5b67 commits MAC assembly to a membrane site. The binding of one C8 molecule to each C5b67 complex gives rise to small transmembrane channels that perturb the target membrane. Each membrane-bound C5b678 complex acts as a receptor for multiple numbers of C9 molecules. Binding of one molecule of C9 initiates a process of C9 oligomerization at the site of membrane attack. The MAC, once assembled on the cell membrane, creates transmembrane channels leading to osmotic lysis of the cell. The transmembrane channels formed vary in size depending on the number of C9 molecules incorporated into the channel structure. The formation of the MAC is controlled by S protein in serum, which prevents C9 polymerization and blocks the attachment of C5b67 to the cell surface. This protects cells adjacent to sites of complement activation from accidental attack.

References:

References:
Complement C1s, Human, Activated, Two-Chain Form

C1s is present in normal human serum at 30 μg/ml. Non-activated C1s is found in circulating blood plasma as a Ca²⁺-dependent dimer in association with one C1q molecule and two C1r molecules to form the first component of complement (C1). Following C1q binding to the classical complement pathway activators, each C1r protein is cleaved to form activated C1r enzyme. Dimeric C1r enzyme cleaves, and thus activates, each C1s molecule into two disulfide-linked fragments of M.W. 59,000 and 28,000. The 28 kDa peptide contains the C1s enzymatic active site. Activated C1s continues complement activation via the classical pathway by cleaving, and thus activating, C2 and C4. Purity: single band by non-reducing SDS-PAGE; two bands by reducing SDS-PAGE. M.W. 87,000.

Cat. No. 204879 250 μg

Cat. No. 204882 50 μg

Complement C3, Human

Glycoprotein composed of two non-identical disulfide-bonded subunits with M.W. of 115,000 (α) and 75,000 (β). Present in normal human serum at 1.25 mg/ml. Classical and alternative activation pathways of complement converge at the C3 step. Activation via either pathway can result in assembly of C3-cleaving enzymes (C3 convertases) on target surfaces. Both C3 convertases cleave the C3 α-chain at peptide bond 77 resulting in the production of C3a (M.W. 9083) and C3b fragments (M.W. 180,000). The C3a peptide, which is released, is one of the three complement derived anaphylatoxins. The nascent C3b fragment can form a covalent ester bond with a target surface. This covalent attachment of C3b to target acceptors is required for continuation of complement activation. Purity: ≈95% by SDS-PAGE. M.W. 90,000.

Cat. No. 204885 250 μg

Cat. No. 204883 50 μg

Complement C3a, Human

Single chain, 77-amino acid peptide. Activation of either complement pathway can result in formation of C3-cleaving enzymes (C3 convertases) on target surfaces. The C3 convertase enzymes assembled by either pathway cleaves the C3 α-chain at peptide bond 77 resulting in the production and release of the C3a peptide. C3a, one of the three complement-derived anaphylatoxins, expresses a wide variety of biological activities including smooth muscle contraction, platelet and neutrophil activation and aggregation, skin wheal and flare, and immunoregulatory reactions. Purity: ≈95% by SDS-PAGE. M.W. 9,083.

Cat. No. 204881 50 μg

Cat. No. 204886 250 μg

Complement C3a des-Arg, Human

Single chain, 76-amino acid peptide. Once the C3a peptide has been produced in human plasma or serum, it is rapidly converted to C3a des-Arg by removal of the C-terminal arginine by endogenous serum carboxypeptidase N. This enzymatic process is considered to be a major mechanism for controlling C3a function in vivo because C3a des-Arg has <1% of the biological activity expressed by the C3a peptide. Therefore, C3a des-Arg can serve as a negative control molecule in experiments involved with the biological activities of the intact C3a anaphylatoxin peptide. Purity: ≥95% by SDS-PAGE. M.W. 9,000.

Cat. No. 204884 50 μg

Cat. No. 204863 250 μg

Complement C3b, Human

Cleavage of the C3 α-chain at peptide bond 77 by either of the complement C3 convertase enzymes results in production of C3a (M.W. 9083) and C3b (M.W. 180,000) fragments. The C3b fragment is a glycoprotein composed of the modified C3 α-chain (α’)(M.W. 105,000) and the intact C3 β-chain (M.W. 75,000). Nascent C3b has the transient ability to form a covalent ester bond with a variety of target surfaces. Once bound to target surfaces, C3b becomes an essential subunit of both the classical and alternative pathway C3-cleaving enzymes. In addition, surface-bound C3b has opsonic and immune adherence activities which are mediated via binding to CR1 (CD35) complement receptors. Purity: ≥90% by SDS-PAGE.

Cat. No. 204860 250 μg

Cat. No. 204862 250 μg

Complement iC3b, Human

iC3b is formed by the cleavage of C3b by Factor I in the presence of Factor H, CR1, or membrane cofactor protein. Factor I cleavage of C3b to iC3b inactivates and prevents C3b from functioning in the C3 or C5 convertase enzymes. The iC3b fragment thus produced is a glycoprotein composed of two C3c’ polypeptides of M.W. 43,000 and M.W. 63,000 which are disulfide bonded to the intact C3 β-chain (M.W. 75,000). iC3b interaction with CR3 (CD11b/CD18) receptors present on a variety of white blood cells greatly enhances phagocytosis of iC3b-coated target cells or particles. Purity: ≥90% by SDS-PAGE.

Cat. No. 204886 250 μg

Cat. No. 204865 50 μg

Complement C3c, Human

C3c is formed by the cleavage of iC3b by Factor I in the presence of CR1 (CD35), or by limited digestion with trypsin or elastase. The C3c fragment is a glycoprotein composed of two C3c’ polypeptides of M.W. 43,000 and M.W. 27,000 which are disulfide bonded to the intact C3 β-chain (M.W. 75,000). Purity: ≥95% by SDS-PAGE.

Cat. No. 204887 250 μg
Complement C3d, Human
C3d is formed by the limited digestion of iC3b by trypsin or elastin. The C3d region of C3 contains the portion of the native C3 molecule which is capable of forming a covalent bond attachment to target surfaces under attack by complement. The binding of C3d to CR2 (CD21) receptors present on B-lymphocytes markedly enhances B cell activation initiated by a wide variety of stimuli. Purity ≥85% by SDS-PAGE. M.W. 30,000.
Cat. No. 204870 100 μg

Complement C4, Human
Glycoprotein composed of three non-identical subunits of M.W. 93,000 (α), 75,000 (β), and 32,000 (γ) linked by disulfide bonds. Present in normal human serum at 400 μg/ml. On activation of complement via the classical pathway, the C1s subcomponent of the C1 complex is converted to an active serine protease that cleaves the C4 α-chain at peptide bond 77, resulting in production of C4α (M.W. 8758) and C4b fragments (M.W. 193,000). The released C4α peptide is one of the three complement-derived anaphylatoxins. The nascent C4b fragment can form a covalent ester bond with target surfaces. This covalent attachment of C4b to target acceptors is required for continuation of complement activation via classical pathway. Purity ≥95% by SDS-PAGE. M.W. 200,000.
Cat. No. 204886 250 μg

Complement C4a, Human
A single chain peptide composed of 77 amino acids. Activation of the classical complement pathway results in the conversion of the C1 complex to an active enzyme. The activated C1 enzyme cleaves the C4 α-chain at peptide bond 77 resulting in the production and release of the C4α peptide. C4α is one of the three complement-derived anaphylatoxins. Purity ≥95% by SDS-PAGE. M.W. 8758.
Cat. No. 204887 50 μg

Complement C4b, Human
Cleavage of the C4 α-chain at peptide bond 77 by activated C1s enzyme results in the production of C4α (M.W. 8,758) and C4b (M.W. 193,000) fragments. The C4b fragment is a glycoprotein composed of the modified C4 α-chain (α′) and intact β- and γ-chains. Like C3b, C4b has the transient ability to form a covalent ester bond with a variety of target cell surfaces. Once bound to the target surface, C4b becomes an essential non-enzymatic subunit of the classical pathway C3-cleaving enzyme (C4b2a). In addition, surface bound C4b has opsonic and immune adherence activities which are mediated via binding to the CR1 (CD35) complement receptor which is found on a variety of inflammatory cells. Purity ≥95% by SDS-PAGE.
Cat. No. 204897 250 μg

Complement C5, Human
Glycoprotein composed of two non-identical subunits of M.W. 120,000 (α) and 75,000 (β) linked by disulfide bonds. Present in normal human serum at 70 μg/ml. Activation of complement via either the classical or alternative pathway can result in the assembly of C5-cleaving enzymes (C5 convertases) on target surfaces. Both C5 convertases cleave the C5 α-chain at peptide bond 74 resulting in production of C5α (M.W. 11,200) and C5b fragments (M.W. 185,000). Released C5α peptide is one of the three complement-derived anaphylatoxins. C5b fragment combines with C6, C7, C8, and C9 to form lytic C5b-9 membrane attack complex (MAC). Purity ≥95% by SDS-PAGE. M.W. 195,000.
Cat. No. 204888 250 μg

Complement C5a, Human, Recombinant
Single chain glycopeptide composed of 74 amino acids. Activation of complement via either pathway results in the formation of C5-cleaving enzymes (C5 convertases) on target surfaces. The C5 convertase enzymes cleave the C5 α-chain at peptide bond 74 resulting in the production and release of the C5α glycopeptide. C5α, on a molecule basis, is the most biologically active of the three complement-derived anaphylatoxins. C5α expresses a wide variety of biological activities which include: inflammatory cell chemotaxis, smooth muscle contraction, activation and release reactions of neutrophils, mast cells and macrophages. Biological activity: Similar to that of serum derived C5α based on the myeloperoxidase assay. Purity ≥95% by SDS-PAGE.
Cat. No. 234397 100 μg

Complement C5a des-Arg, Human
Single chain glycopeptide composed of 73 amino acids. Once C5a has been produced in human plasma or serum, it is rapidly converted to C5a des-Arg upon removal of the C-terminal arginine by the endogenous serum carboxypeptidase N. Unlike the C3a des-Arg peptide, C5a des-Arg retains significant levels of its biological activities. Thus, C5a des-Arg has been shown to exhibit inflammatory cell chemotaxis, smooth muscle contraction and leukotriene release from guinea pig lung. Purity ≥95% by SDS-PAGE. M.W. 11,100.
Cat. No. 204902 30 μg

Complement C5b,6 Complex, Human
Activation of complement by either pathway results in the formation of C5-cleaving enzymes (C5 convertases) on target surfaces. The C5 convertase enzymes cleave the C5 α-chain at peptide bond 74, resulting in the formation of the C5α anaphylatoxin (M.W. 11,200) and the C5b fragments (M.W. 185,000). The nascent C5b fragment can combine with C6, C7, C8, and C9 to form the lytic C5b-9 membrane attack complex (MAC) on target surfaces. When C5 activation occurs in the presence of C6 only, e.g. in C7-deficient serum, a stable C5b,6 complex is formed. In a process termed Reactive Lysis, the (MAC) can be assembled on target cell surfaces in the absence of any additional complement proteins by incubating target cells with the C5b,6 complex and purified C7, C8, and C9. Purity ≥95% by SDS-PAGE. M.W. 312,000.
Cat. No. 204906 50 μg
Complement C6, Human
Single-chain glycoprotein present in normal human serum at 64 μg/ml. On activation of complement via either the classical or alternative pathway, C5 is cleaved into Csα and Csβ fragments. The Cs6 binds to the nascent Csβ fragment, resulting in formation of the Csβ6 complex. Water-soluble Csβ6 complex combines with C7, C8 and C9 to form lytic Csβ9 complement membrane attack complex (MAC). Purity: ≥95% by SDS-PAGE. M.W. 128,000.

Cat. No. 204890 250 μg

Complement C7, Human
Single-chain glycoprotein present in normal human serum at 56 μg/ml. On activation of complement via either the classical or alternative pathway, C5 is cleaved into Csα and Csβ fragments. The C6 and C7 bind to the nascent Csβ fragment, resulting in formation of the Csβ7 complex. Membrane-bound, hydrophobic Csβ7 complex combines with C8 and C9 to form the lytic Csβ9 complement membrane attack complex (MAC). Purity: ≥95% by SDS-PAGE. M.W. 121,000.

Cat. No. 204892 250 μg

Complement C8, Human
Glycoprotein composed of three non-identical subunits of M.W. 64,000 (α), 64,000 (β) and 22,000 (γ). Present in normal human serum at 55 μg/ml. On activation of complement via either the classical or alternative pathway, C5 is cleaved into Csα and Csβ fragments. The nascent Csβ fragment binds to C6, C7 and C8 resulting in formation of the Csβ-8 complex on target surfaces. Each membrane-bound, hydrophobic Csβ-8 complex combines with six to twelve C9 molecules to complete the assembly of the lytic Csβ9-complement membrane attack complex (MAC). Purity: ≥95% by SDS-PAGE. M.W. 150,000.

Cat. No. 204896 250 μg

Complement C9, Human
Single-chain glycoprotein present in normal human serum at 60 μg/ml. On activation of complement via either the classical or alternative pathway, formation of the Cs5 fragment initiates assembly of the Csβ-9 complement membrane attack complex (MAC) on target surfaces. Full lytic activity of MAC occurs only after binding of six to twelve C9 molecules to each Csβ-8 complex. Purity: ≥95% by SDS-PAGE. M.W. 71,000.

Cat. No. 204910 250 μg

Cobra Venom Factor, Naja naja kaouthia
[Cobra venom anticomplementary protein]
Glycoprotein composed of three non-identical disulfide-bonded subunits with M.W. of 68,000 (α), 48,000 (β), and 30,000 (γ). Cobra venom factor (CVF) is a structural and functional analog of cobra, as well as mammalian, C3. Thus, in the presence of Factor B, Factor D and Mg2+, CVF can form a stable CVF,Bb complex which is a C3/C5 convertase enzyme, however, the CVF,Bb complex is not susceptible to regulation by Factors H and I. Four to six μg of purified CVF are equal to 1.0 unit of functional activity as measured by the method of Cochrane, C.G., et al. Purity: ≥95% by SDS-PAGE. Not available for sale outside of the United States.

Cat. No. 233552 1 mg

Factor B, Human
(C3 Proactivator)
Single-chain glycoprotein present in normal human serum at about 200 μg/ml. During activation of complement via the alternative pathway, Factor B is cleaved and thus activated by Factor D into two fragments of M.W. of 30 kDa (Ba) and 63 kDa (Bb). The Bb fragment contains the serine protease enzymatic active site. The activated Bb fragment continues complement activation via the alternative pathway by cleaving, and thus activating, C3 and C5. Purity: ≥90% by SDS-PAGE. M.W. 93,000.

Cat. No. 341262 250 μg

Factor D, Human
(Adipsin; C3 Proactivator Convertase)
Single-chain glycoprotein composed of 222 amino acids, present in normal human serum at about 1.4 μg/ml. Serine protease that cleaves, and thus activates, Factor B during activation of complement via the alternative pathway. Has recently been shown to be identical to adipsin, a serine protease secreted into the bloodstream by adipocytes. Purity: ≥95% by SDS-PAGE. M.W. 24,000.

Cat. No. 341273 25 μg

Factor H, Human
(β1, Globulin)
Single-chain glycoprotein present in normal human serum at about 500 μg/ml. Regulates formation and function of complement C3 and C5 convertase enzymes. A C3b-binding protein, not an enzyme. Regulatory activity is attributed to its ability to recognize and bind to C3b fragments. Purity: ≥95% by SDS-PAGE. M.W. 150,000.

Cat. No. 341274 25 μg
Factor I, Human
(C3b/C4b Inactivator)
Glycoprotein composed of two non-identical disulfide-bonded subunits with M.W. of 50 kDa (a) and 38 kDa (b). Present in normal human serum at about 34 μg/ml. A serine protease that requires protein cofactor in order to effect substrate cleavage. Thus, either Factor H a complement receptor CR1 or C4-binding protein or complement receptor CR1 can function as the cofactor required for Factor I-mediated cleavage of C3b. C4-binding protein or complement receptor CR1 can function as the cofactor required for Factor I-mediated cleavage of C4b. Purity: ≥95% by SDS-PAGE. M.W. 88,000.
Cat. No. 341280
250 μg

Factor P, Human
(Properdin)
Glycoprotein found in circulating blood plasma in dimeric, trimeric, and tetrameric forms with M.W. of 92 kDa, 138 kDa, and 184 kDa, respectively. Present in normal human serum at about 20 μg/ml. Regulatory protein of the alternative pathway of complement activation. Accelerates complement activation by binding to and stabilizing the alternative pathway C3 and C5 convertase enzymes. Purity: >90% by SDS-PAGE. M.W. 220,000.
Cat. No. 341283
250 μg

Antibodies to Complement Components

<table>
<thead>
<tr>
<th>Product</th>
<th>Cat. No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti–Complement C1–Esterase Inhibitor, Human</td>
<td>234363</td>
<td>2 ml</td>
</tr>
<tr>
<td>(Goat)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti–Complement C1q, Human (Goat)</td>
<td>234390</td>
<td>1 ml</td>
</tr>
<tr>
<td>Anti–Complement C2, Human (Goat)</td>
<td>234365</td>
<td>1 ml</td>
</tr>
<tr>
<td>Anti–Complement C3, Human (Goat)</td>
<td>204869</td>
<td>1 ml</td>
</tr>
<tr>
<td>Anti–Complement C3a, Human (Rabbit)</td>
<td>204859</td>
<td>1 ml</td>
</tr>
<tr>
<td>Anti–Complement C4, Human (Goat)</td>
<td>204894</td>
<td>1 ml</td>
</tr>
<tr>
<td>Anti–Complement C5, Human (Rabbit)</td>
<td>800311</td>
<td>0.5 ml</td>
</tr>
<tr>
<td>Anti–Complement C5a, Human (Rabbit)</td>
<td>204889</td>
<td>1 ml</td>
</tr>
</tbody>
</table>

Complement–Depleted Sera

<table>
<thead>
<tr>
<th>Product</th>
<th>Cat. No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement C1q-Depleted Human Serum</td>
<td>234401</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C2-Depleted Human Serum</td>
<td>234402</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C3-Depleted Human Serum</td>
<td>234403</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C4-Deficient Guinea Pig Serum</td>
<td>234404</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C5-Depleted Human Serum</td>
<td>234405</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C6-Depleted Human Serum</td>
<td>234406</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C7-Depleted Human Serum</td>
<td>234407</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C8-Depleted Human Serum</td>
<td>234408</td>
<td>1 ml</td>
</tr>
<tr>
<td>Complement C9-Depleted Human Serum</td>
<td>234409</td>
<td>1 ml</td>
</tr>
<tr>
<td>Factor B-Depleted Human Serum</td>
<td>234410</td>
<td>1 ml</td>
</tr>
</tbody>
</table>

Calbiochem® General Catalog 2004/2005
Biochemicals and Immunochemicals
Tools and technical expertise to support your signal transduction and disease-related research.

Antibodies for Cancer Research
You can rely on our technical support and most comprehensive product selection for cancer research.

Order your FREE copy today!

Prices and availability are subject to change
Copyright©2004 EMD Biosciences, Inc. An Affiliate of Merck KGaA, Darmstadt, Germany. All Rights Reserved.
Each product is sold with a limited warranty which is set forth in the Terms of Sale which are provided with each purchase.
Each product is intended to be used for research purposes only. It is not to be used for drug or diagnostic purposes nor is intended for human use. EMD Biosciences products may not be resold, modified for resale, or used to manufacture commercial products without written approval of EMD Biosciences.
For more information or to order Calbiochem products, contact us directly or your local sales office.

Orders:
Phone 858 450 9600
Fax 858 453 3552

Technical Support
Phone 858 450 9600
E-mail calbiochem@merckbiosciences.com

Visit our website:
www.merckbiosciences.com/calbiochem

Calbiochem, Novabiochem, and Novagen are brands of Merck Biosciences, an affiliate of Merck KGaA, Darmstadt, Germany.

Printed in the USA.